ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Sicong Xiao, Kangyu Ren, Dean Wang
Nuclear Science and Engineering | Volume 189 | Number 3 | March 2018 | Pages 272-281
Technical Paper | doi.org/10.1080/00295639.2017.1394088
Articles are hosted by Taylor and Francis Online.
In order to improve the effectiveness and stability of the coarse-mesh finite difference method (CMFD), we developed a new nonlinear diffusion acceleration scheme for solving neutron transport equations. This scheme, called LR-NDA, employs a local refinement approach on the framework of CMFD by solving a local boundary value problem of the scalar flux on the coarse-mesh structure to replace the piecewise constant scalar flux obtained by CMFD. The refined flux is then used to update the scalar flux in the neutron transport source iteration. In this paper, a detailed convergence study of LR-NDA is carried out based on a two-dimensional fixed-source problem, and it shows that LR-NDA is much more effective and stable than CMFD for a wide range of optical thicknesses. In addition, we demonstrate that LR-NDA is a local adaptive method. LR-NDA does not necessarily require local refinement for all the coarse-mesh cells on the problem domain, i.e., it can be used only for relatively optically thick regions where the standard CMFD scheme would encounter the convergence problem.