ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Sicong Xiao, Kangyu Ren, Dean Wang
Nuclear Science and Engineering | Volume 189 | Number 3 | March 2018 | Pages 272-281
Technical Paper | doi.org/10.1080/00295639.2017.1394088
Articles are hosted by Taylor and Francis Online.
In order to improve the effectiveness and stability of the coarse-mesh finite difference method (CMFD), we developed a new nonlinear diffusion acceleration scheme for solving neutron transport equations. This scheme, called LR-NDA, employs a local refinement approach on the framework of CMFD by solving a local boundary value problem of the scalar flux on the coarse-mesh structure to replace the piecewise constant scalar flux obtained by CMFD. The refined flux is then used to update the scalar flux in the neutron transport source iteration. In this paper, a detailed convergence study of LR-NDA is carried out based on a two-dimensional fixed-source problem, and it shows that LR-NDA is much more effective and stable than CMFD for a wide range of optical thicknesses. In addition, we demonstrate that LR-NDA is a local adaptive method. LR-NDA does not necessarily require local refinement for all the coarse-mesh cells on the problem domain, i.e., it can be used only for relatively optically thick regions where the standard CMFD scheme would encounter the convergence problem.