ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Weixiong Zheng, Ryan G. McClarren, Jim E. Morel
Nuclear Science and Engineering | Volume 189 | Number 3 | March 2018 | Pages 259-271
Technical Paper | doi.org/10.1080/00295639.2017.1407592
Articles are hosted by Taylor and Francis Online.
In this work, we present a subdomain discontinuous least-squares (SDLS) scheme for neutronics problems. Least-squares (LS) methods are known to be inaccurate for problems with sharp total cross-section interfaces. In addition, the LS scheme is known not to be globally conservative in heterogeneous problems. In problems where global conservation is important, e.g., k-eigenvalue problems, a conservative treatment must be applied. In this study, we propose an SDLS method that retains global conservation and, as a result, gives high accuracy on eigenvalue problems. Such a method resembles the LS formulation in each subdomain without a material interface and differs from LS in that an additional LS interface term appears for each interface. The scalar flux is continuous in each subdomain with the continuous finite element method while discontinuous on interfaces for every pair of contiguous subdomains. The SDLS numerical results are compared with those obtained from other numerical methods with test problems having material interfaces. High accuracy of scalar flux in fixed-source problems and in eigenvalue problems is demonstrated.