ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Xuan Ha Nguyen, Yonghee Kim
Nuclear Science and Engineering | Volume 189 | Number 3 | March 2018 | Pages 224-242
Technical Paper | doi.org/10.1080/00295639.2017.1394086
Articles are hosted by Taylor and Francis Online.
Detailed pin-by-pin core calculations are under development to replace the conventional assembly-based nodal methods. This research investigates a novel intrapin reconstruction procedure coupled with these pinwise calculations to obtain a detailed power profile within a fuel rod. The reconstruction process is based on the well-established form function (FF) method. In this paper, the fuel rod is geometrically divided into 40 equi-volume subsections where the intrapin power is reconstructed with corresponding heterogeneous FF. The intrapin homogeneous flux distributions are approximated by using the analytical solution of the two-group neutron diffusion equation with pinwise boundary constraints. Four types of constraints are considered to determine the flux shapes: surface-average net current, surface-average, corner-point, and volume-average cell fluxes. Therefore, six different combinations of the boundary constraints are separately evaluated for the intrapin power profile. All necessary information, including burnup-dependent FFs, homogenized group constants, reference power distribution, and pinwise boundary constraints, are predetermined from a high-fidelity Monte Carlo calculation. The numerical results demonstrate that the intrapin power can be retrieved for enriched and Gd-loaded fuel pins with reasonable accuracy, even at rodded conditions and in highly burned conditions of 10 and 30 GWd/tonne U. In addition, a sensitivity analysis is also performed to assess the feasibility of the proposed method when it is coupled with a pinwise calculation.