ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Sung Hoon Choi, Hyung Jin Shim, Chang Hyo Kim
Nuclear Science and Engineering | Volume 189 | Number 2 | February 2018 | Pages 171-187
Technical Paper | doi.org/10.1080/00295639.2017.1388089
Articles are hosted by Taylor and Francis Online.
A generalized perturbation theory (GPT) formulation suited for the Monte Carlo (MC) eigenvalue calculations is newly developed to estimate sensitivities of a general MC tally to input data. In the new GPT formulation, the tally perturbation due to an input parameter change is expressed as a sum of the perturbed operator effect and the perturbed source effect requiring the generalized adjoint function weighting. It is shown that the new GPT formulation is equivalent to the conventional first-order differential operator sampling method augmented by the fission source perturbation method. Because the GPT formulation makes it necessary to compute the generalized adjoint function, MC sensitivity estimation algorithms can consume a huge computer memory space to save historywise estimates of tallies. As a way to alleviate the memory space problem, the MC Wielandt iteration method is incorporated into the MC GPT algorithm. For the purpose of comparison, MC GPT algorithms by both the standard power iteration and the Wielandt iteration methods are implemented in the Seoul National University MC code, McCARD. Their performances are examined in two-group homogeneous problems, Godiva and the TMI-1 pin cell problem. From the nuclear data sensitivity and uncertainty analyses of these problems, it is demonstrated that the new GPT methods can predict the sensitivities of reaction rate tallies to cross-section data very well. It is also demonstrated that the incorporation of the MC Wielandt iteration method into the new GPT calculations consumes a negligibly small amount of memory required for—and thus resolves—the computer memory issue associated with the adjoint function calculations.