ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Argala Srivastava, K. P. Singh, S. B. Degweker
Nuclear Science and Engineering | Volume 189 | Number 2 | February 2018 | Pages 152-170
Technical Paper | doi.org/10.1080/00295639.2017.1388091
Articles are hosted by Taylor and Francis Online.
The use of the Monte Carlo (MC) method for space-time reactor kinetics is expected to be much more accurate than the presently used deterministic methods largely based on few-group diffusion theory. However, the development of the MC method for space-time reactor kinetics poses challenges because of the vastly different timescales of neutrons and delayed neutron precursors and their vastly different populations that also change with time by several orders of magnitude. In order to meet these challenges in MC-based space kinetics, we propose various new schemes such as deterministic decay of precursors in each time step, adjustment of weights of neutrons and precursors for population control, use of mean number of secondaries per collision, and particle splitting/Russian roulette to reduce the variance in neutron power. The efficacy of these measures is first tested in a simpler point-kinetics version of the MC method against analytical or accurate numerical solutions of point-kinetics equations. The ideas are then extended to space-dependent MC kinetics and are validated against a transport theory/MC transient benchmark. We have also tested our methods by comparison with results of realistic space-time kinetics benchmarks/studies involving multiregion reactors, energy dependence, movement of control rods, and feedback—most of which are based on few-group diffusion theory treated by the finite difference method. To facilitate exact comparison with such benchmarks, we have implemented the schemes described above for space-time reactor kinetics based on finite difference diffusion MC, a method developed by us earlier in a different context.