ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Indrajeet Singh, S. B. Degweker, Anurag Gupta
Nuclear Science and Engineering | Volume 189 | Number 2 | February 2018 | Pages 101-119
Technical Paper | doi.org/10.1080/00295639.2017.1388092
Articles are hosted by Taylor and Francis Online.
The fuel in high-temperature reactors (HTRs) is made up of tiny fuel particles (called TRISO particles) dispersed randomly in a graphite matrix. For the commonly used fuels, namely, enriched uranium or low-enriched uranium/233U mixed with Th, this dispersion may be treated as a homogeneous mixture at almost all neutron energies except at the resonances of the major nuclide (238U or 232Th) where the macroscopic cross section is so large that the neutron mean free path is comparable to the fuel kernel radius. In the equivalence theory approach used in many codes based on the WIMS-D library, this heterogeneity is accounted for by the escape cross section from a fuel kernel together with a carefully evaluated Dancoff correction factor.
In HTRs designed to burn plutonium, the fuel kernel contains oxides of various isotopes of Pu, and there is no fertile nuclide. Hence, the macroscopic cross section of the fuel is rather high in the thermal region, i.e., below 4 eV in the WIMS-D library (which also includes the two major resonances of 240Pu and 239Pu). For such fuels, the treatment of neutron transport in the thermal energy range must also include the random heterogeneous distribution of fuel in the graphite matrix. Since the resonance treatment method in the WIMS-D library, described above, is neither available nor applicable for thermal energies, a different method is clearly necessary.
HTR lattice codes such as WIMS and DRAGON use approximate collision probabilities between the various microscopic regions, namely, the fuel kernel, the coating layers, and the graphite matrix in the solution of the multigroup transport equation to account for this heterogeneity. In an earlier paper, we developed a simple though heuristic approach for solving this problem. In the present paper, we develop a more systematic theoretical method for solving the transport equation in a random dispersion by an exact evaluation of the collision probabilities in various regions of the lattice cell. The method has been incorporated in the collision probability code BOXER3. Comparison with benchmarks of Pu-based HTR fuels shows very good agreement thus validating the new approach. The method is likely to have application beyond the problem discussed in the paper.