ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
L. Pantera, P. Querre
Nuclear Science and Engineering | Volume 189 | Number 1 | January 2018 | Pages 56-68
Technical Paper | doi.org/10.1080/00295639.2017.1373519
Articles are hosted by Taylor and Francis Online.
The CABRI facility is an experimental pulse nuclear reactor funded by the French Nuclear Safety and Radioprotection Institute and operated by the French Atomic Energy Commission. It is designed to study the behavior of fuel rods at high burnup under reactivity-initiated accident (RIA) conditions, such as a control rod ejection. The distinctive feature of this reactor is its reactivity injection system. The fast depressurization into a discharge tank of 3He (strong neutron absorber) previously introduced inside 96 tubes (so-called transient rods) located among the fuel rods allows us to create a power burst from 100 kW to 20 GW with a full-width at half-maximum of 10 to 80 ms. The total energy deposit in the tested rod is adjusted by dropping the control and safety rods after the power transient. The neutron flux is measured online by compensated boron chambers located outside the reactor and operated in the current mode. These neutron detectors are calibrated during a commissioning phase thanks to standards given by a conventional heat balance. To assess the energy released into the test rod, we had to integrate the driver core power signal measured online. Thus, the beginning of the transient, called transient overpower (TOP) onset, has to be estimated. The TOP onset of a transient test is defined as the instant of the beginning of the test. It is determined by experimentalists during the processing phase. It corresponds to the beginning of the increase of the neutron detector signal, measured by the compensated boron chamber devices sufficiently sensitive at low current levels. So far, the choice of this instant has been realized by a visual choice zooming in the zone of interest, which may induce some shift according to experimentalists. In an attempt to overcome this issue, we put forward in this paper a theoretical method of determination to calculate the TOP onset. The main asset of the method is to formalize the TOP onset determination. Furthermore, it provides the possibility of associating an uncertainty, which is impossible by the manual process. The methodology relies on the fact that at the beginning of the RIA transient, the neutron flux at any point of the reactor core undergoes an exponential evolution as a function of the time. Then, a logarithmic transform allows us to show that the search for the TOP onset is equivalent to solving a nonlinear regression. The methodology has been validated in the last 14 experiments. Moreover, the reactor restarted in October 2015 and now gives us the opportunity to apply this methodology on signals recently acquired and pertaining to the power commissioning phase with a view to preparing the experiment foreseen next year.