ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Woong Heo, Yonghee Kim
Nuclear Science and Engineering | Volume 189 | Number 1 | January 2018 | Pages 41-55
Technical Paper | doi.org/10.1080/00295639.2017.1373516
Articles are hosted by Taylor and Francis Online.
Thermomechanical effects, irradiation, and structural restrictions result in very tangled behavior of assemblies in sodium-cooled fast reactors (SFRs). Reactivity feedback caused by the assembly behavior (deformation or distortion) is one of the key parameters in the inherent safety analysis of fast reactor systems. However, to date there has been no accurate and efficient deterministic way to compute directly the reactivity changes by actual local perturbation. This paper evaluates the feasibility of applying the Galerkin finite element method (GFEM) based on linear shape functions to estimate reactivity changes due to local core deformations in SFRs. Assessment of reactivity changes is conducted for six types of deformation scenarios of the two-dimensional prototype Gen-IV SFR. Uniform expansions and local deformations are included in the scenarios. The results from the multigroup diffusion equation based on the GFEM are compared with references calculated by MCNP5. The study shows that diffusion analysis based on the GFEM with linear shape functions can properly estimate reactivity changes by core deformation in the fast reactor with ~13% relative error of Δρ.