ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Woong Heo, Yonghee Kim
Nuclear Science and Engineering | Volume 189 | Number 1 | January 2018 | Pages 41-55
Technical Paper | doi.org/10.1080/00295639.2017.1373516
Articles are hosted by Taylor and Francis Online.
Thermomechanical effects, irradiation, and structural restrictions result in very tangled behavior of assemblies in sodium-cooled fast reactors (SFRs). Reactivity feedback caused by the assembly behavior (deformation or distortion) is one of the key parameters in the inherent safety analysis of fast reactor systems. However, to date there has been no accurate and efficient deterministic way to compute directly the reactivity changes by actual local perturbation. This paper evaluates the feasibility of applying the Galerkin finite element method (GFEM) based on linear shape functions to estimate reactivity changes due to local core deformations in SFRs. Assessment of reactivity changes is conducted for six types of deformation scenarios of the two-dimensional prototype Gen-IV SFR. Uniform expansions and local deformations are included in the scenarios. The results from the multigroup diffusion equation based on the GFEM are compared with references calculated by MCNP5. The study shows that diffusion analysis based on the GFEM with linear shape functions can properly estimate reactivity changes by core deformation in the fast reactor with ~13% relative error of Δρ.