ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Woong Heo, Yonghee Kim
Nuclear Science and Engineering | Volume 189 | Number 1 | January 2018 | Pages 41-55
Technical Paper | doi.org/10.1080/00295639.2017.1373516
Articles are hosted by Taylor and Francis Online.
Thermomechanical effects, irradiation, and structural restrictions result in very tangled behavior of assemblies in sodium-cooled fast reactors (SFRs). Reactivity feedback caused by the assembly behavior (deformation or distortion) is one of the key parameters in the inherent safety analysis of fast reactor systems. However, to date there has been no accurate and efficient deterministic way to compute directly the reactivity changes by actual local perturbation. This paper evaluates the feasibility of applying the Galerkin finite element method (GFEM) based on linear shape functions to estimate reactivity changes due to local core deformations in SFRs. Assessment of reactivity changes is conducted for six types of deformation scenarios of the two-dimensional prototype Gen-IV SFR. Uniform expansions and local deformations are included in the scenarios. The results from the multigroup diffusion equation based on the GFEM are compared with references calculated by MCNP5. The study shows that diffusion analysis based on the GFEM with linear shape functions can properly estimate reactivity changes by core deformation in the fast reactor with ~13% relative error of Δρ.