ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
YuGwon Jo, Nam Zin Cho
Nuclear Science and Engineering | Volume 189 | Number 1 | January 2018 | Pages 26-40
Technical Paper | doi.org/10.1080/00295639.2017.1373517
Articles are hosted by Taylor and Francis Online.
In the three-dimensional (3-D) continuous-energy whole-core reactor analysis, the partial current–based coarse mesh finite difference (p-CMFD) feedback was applied to the Monte Carlo (MC) k-eigenvalue problem simulation for both inactive and active iterations (cycles). To reduce the stochastic errors in the p-CMFD parameters and their biases due to the ratio-type estimators, the first-in-first-out (FIFO) accumulation scheme was introduced in the MC/p-CMFD procedure. The MC/p-CMFD procedure was tested on a typical pressurized water reactor 3-D continuous-energy whole-core problem while varying the FIFO queue lengths and the results were compared with the conventional power iteration. The Shannon entropy analysis showed that MC/p-CMFD accelerates the convergence of the fission source distributions and mitigates the spatial clustering phenomenon. The real variance analysis also showed that MC/p-CMFD reduces the interiteration correlation, leading to the most real variance reduction in the local MC tallies at the optimum queue length (L = 5). It was also shown that a nontrivial bias was introduced by the p-CMFD feedback, especially for the global tally (keff) with L = 1. However, the bias decreased as the tally bin size became smaller and it was effectively reduced by increasing the queue length (L ≥ 5). In conclusion, the MC/p-CMFD procedure showed promising capability for 3-D continuous-energy whole-core reactor analysis by MC simulation.