ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. E. M. Saxby, Anil K. Prinja, M. D. Eaton
Nuclear Science and Engineering | Volume 189 | Number 1 | January 2018 | Pages 1-25
Technical Paper | doi.org/10.1080/00295639.2017.1367569
Articles are hosted by Taylor and Francis Online.
The time and phase-space dependent backward master equation is used to develop and numerically solve a coupled system of transport equations for the probability distribution of the neutron number in subregions of a spherically symmetric, reflected, subcritical plutonium sphere. The number distributions are computed for a single initial neutron injected into the assembly and localized in phase space as well as in the presence of a uniformly distributed spontaneous fission source in the fissile region. A standard multigroup, discrete ordinates scheme with second-order spatial and fully implicit time discretization proved sufficiently accurate for this application. The results presented show complex behaviors arising from the material interface and spectral effects due to neutron slowing down that cannot be encapsulated in a lumped model. Additionally, low-order spatial moments were computed both by averaging the number distributions of finite order and directly solving the transport equations for the moments using the same numerical scheme. While generally excellent agreement is observed between the two approaches, the truncation order has a noticeable effect on the accuracy of the higher moments that are computed using the number distributions.