ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Woosong Kim, Woong Heo, Yonghee Kim
Nuclear Science and Engineering | Volume 188 | Number 3 | December 2017 | Pages 207-245
Technical Paper | doi.org/10.1080/00295639.2017.1354592
Articles are hosted by Taylor and Francis Online.
This paper introduces the albedo-corrected parameterized equivalence constants (APEC) method, a new method for correcting the homogenized two-group cross sections of the pressurized water reactor (PWR) fuel assemblies (FAs) by taking into account the neutron leakage. First, an analysis was performed of the position dependence of the assembly-homogenized two-group cross sections in an actual core. In order to eliminate the two-group cross-section error in the conventional homogenization method, the APEC method is proposed which parameterizes the homogenized two-group cross sections in terms of an integrated albedo information current-to-flux ratio (CFR). Also, small color-set models are introduced to obtain physically meaningful CFR boundary conditions for the APEC method and their characteristic features are discussed. In the case of FAs with neighboring baffle, slightly modified APEC functions are introduced to deal with the strong spectral interaction between the FA and the baffle-reflector region in PWRs. In addition, an improved APEC function is developed by explicitly accounting for the neutron spectrum change in a FA in terms of a spectral index defined as the fast-to-thermal-flux ratio. For the test of the proposed APEC functions, a small modular reactor (SMR) core was chosen and comparative analyses were performed in detail for each type of homogenized two-group cross section. In this work, the transport lattice code DeCART2D was used for the analysis of the benchmark problems. In the comparative analyses, the APEC-corrected cross sections were compared with the conventional two-group constants and reference ones for several representative FAs. The APEC algorithm was implemented into an in-house nodal expansion method code in conjunction with a partial-current CMFD (p-CMFD) acceleration. The nodal analyses of an SMR initial core and a large PWR core were performed to evaluate the performance of the APEC method. In order to show the generality of the APEC functions obtained from lattice calculations, several modified core configurations were also analyzed. In addition, a rodded SMR initial core problem was also analyzed to test the APEC method in an extremely abnormal core configuration. The nodal analyses showed that the APEC method can improve the nodal accuracy significantly with a small amount of additional computing cost.