ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Junhua Luo, Li Jiang, Suyuan Li
Nuclear Science and Engineering | Volume 188 | Number 2 | November 2017 | Pages 198-206
Technical Paper | doi.org/10.1080/00295639.2017.1352366
Articles are hosted by Taylor and Francis Online.
Cross sections of the 113In(n,2n)112m,gIn and 115In(n,2n)114m,gIn reactions and their isomeric cross-section ratios σm/σg have been measured by means of the activation technique at three neutron energies in the range 13 to 15 MeV. Indium samples and niobium monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The monoenergetic neutron beam was produced via the 3H(d,n)4He reaction at the Pd-300 Neutron Generator of the Chinese Academy of Engineering Physics. The activities induced in the reaction products were measured using high-resolution gamma-ray spectroscopy. The pure cross section of the ground state was derived from the absolute cross section of the metastable state and the residual nuclear decay analysis. Cross sections were also evaluated theoretically using the numerical nuclear model code TALYS-1.8 with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.