ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. P. Sharma, A. K. Nayak
Nuclear Science and Engineering | Volume 188 | Number 2 | November 2017 | Pages 175-186
Technical Paper | doi.org/10.1080/00295639.2017.1339539
Articles are hosted by Taylor and Francis Online.
The Advanced Heavy Water Reactor (AHWR) is a vertical pressure tube–type, heavy water–moderated, and boiling light water–cooled natural-circulation–based reactor. The fuel bundle of AHWR contains 54 fuel rods arranged in three concentric rings of 12, 18, and 24 fuel rods. This fuel bundle is divided into a number of imaginary interacting flow passages called subchannels. Transition from a single-phase to a two-phase flow condition occurs in the reactor rod bundle with an increase in power. Predicting the thermal margin of the reactor has necessitated determining the diversion cross flow of coolant among these subchannels under two-phase flow. Thus, it is vital to evaluate cross flow between subchannels of the AHWR rod bundle. In this paper, experiments were carried out to investigate the diversion cross-flow phenomena for single- and two-phase flow in the simulated subchannels of the reactor. The size of the rod and the pitch in the test were the same as that of the actual rod bundle in the prototype. The cross-flow tests were carried out at atmospheric condition without adding heat. In addition, the capability of the existing correlation is also checked to predict the cross-flow resistance coefficient, and it is found that none of these models accurately predict the measured cross-flow resistance coefficient for the AHWR rod bundle. In view of this, a new model applicable to AHWR has been presented that predicts the cross-flow resistance coefficient quite accurately.