ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Tengfei Zhang, Yongping Wang, E. E. Lewis, M. A. Smith, W. S. Yang, Hongchun Wu
Nuclear Science and Engineering | Volume 188 | Number 2 | November 2017 | Pages 160-174
Technical Paper | doi.org/10.1080/00295639.2017.1350002
Articles are hosted by Taylor and Francis Online.
A three-dimensional variational nodal method (VNM) is presented for pressurized water reactor core calculations without fuel-moderator homogenization. The nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal polynomials in z are used to approximate the spatial flux distribution. On the lateral interfaces, orthogonal polynomials are employed. On the axial interfaces, the finite elements facilitate a spatially accurate current representation that has proven to be a challenge for the method of characteristics–based two-dimensional/one-dimensional approximations which typically rely on spatial homogenization. The angular discretization utilizes an even-parity integral method within the nodes, with the integrals evaluated using high-order Chebyshev-Legendre cubature. On the lateral and axial interfaces, low-order spherical harmonics (Pn) are augmented by high-order Pn expansions to which quasi-reflected conditions are applied. With quasi-reflected conditions, the solution converges to the high-order Pn solution for an infinite lattice of identical cells with no gradient, while the low-order Pn expansions handle global gradients in both the radial and axial directions. The method is implemented in the PANX code and applied first to a number of model problems to study convergence of the space-angle approximations and then to the C5G7 benchmark problems. Multigroup Monte Carlo solutions provide reference values for eigenvalues and pin-power distributions.