ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Paul K. Romano, Amanda L. Lund, Andrew R. Siegel
Nuclear Science and Engineering | Volume 188 | Number 1 | October 2017 | Pages 43-56
Technical Paper | doi.org/10.1080/00295639.2017.1340692
Articles are hosted by Taylor and Francis Online.
The method of successive generations used in Monte Carlo simulations of nuclear reactor models is known to suffer from intergenerational correlation between the spatial locations of fission sites. One consequence of the spatial correlation is that the convergence rate of the variance of the mean for a tally becomes worse than O(N–1). In this work, we consider how the true variance can be minimized given a total amount of work available as a function of the number of source particles per generation, the number of active/discarded generations, and the number of independent simulations. We demonstrate through both analysis and simulation that under certain conditions the solution time for highly correlated reactor problems may be significantly reduced either by running an ensemble of multiple independent simulations or simply by increasing the generation size to the extent that it is practical. However, if too many simulations or too large a generation size is used, the large fraction of source particles discarded can result in an increase in variance. We also show that there is a strong incentive to reduce the number of generations discarded through some source convergence acceleration technique. Furthermore, we discuss the efficient execution of large simulations on a parallel computer; we argue that several practical considerations favor using an ensemble of independent simulations over a single simulation with very large generation size.