ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Delgersaikhan Tuya, Hiroki Takezawa, Toru Obara
Nuclear Science and Engineering | Volume 188 | Number 1 | October 2017 | Pages 33-42
Technical Paper | doi.org/10.1080/00295639.2017.1337383
Articles are hosted by Taylor and Francis Online.
An approach to multiregion supercritical transient analysis based on the integral kinetic model (IKM) and Monte Carlo method is further developed with new features. The IKM describes the region-dependent fission rate during the transient in a system of arbitrary geometry using a secondary fission probability density function, which takes the explicit neutron transport time between successive fissions across the regions into account. The new features of the improved approach include treatment of the multiregion transient using repeated multidimensional linear interpolation between pre-obtained kinetic functions (i.e., secondary probability density function), a new method for calculating the kinetic functions using the continuous-energy Monte Carlo code MVP2.0, and utilization of kinetic functions directly in the IKM without the fitting function that introduces a fitting error. The improved approach is verified by applying it to the supercritical transient in simple Godiva systems of different region combinations without feedback. In addition, we attempt to validate the improved approach by applying it to the supercritical transient in a simplified Godiva system with thermal expansion feedback and compare the obtained and experimental results. The verification results indicate the improved approach works well with different combinations of regions while the validation results show promising agreement with the experimental results. This study is part of an ongoing research activity on the development of Multi-region Integral Kinetic (MIK) code for general space- and time-dependent kinetic analyses.