ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Seungsu Yuk, Nam Zin Cho
Nuclear Science and Engineering | Volume 188 | Number 1 | October 2017 | Pages 1-14
Technical Paper | doi.org/10.1080/00295639.2017.1332891
Articles are hosted by Taylor and Francis Online.
This paper identifies the cause of slow convergence for optically thick coarse mesh cells, when coarse mesh-based acceleration methods known in the literature are applied to the neutron transport criticality calculation. To overcome the limitation, this paper introduces two two-level iterative schemes to speed up coarse mesh-based acceleration, and they are applied to the partial current-based coarse mesh finite difference (p-CMFD) acceleration method. In the first scheme, a type of fine mesh finite difference (p-FMFD)- or intermediate mesh finite difference (p-IMFD)-based acceleration with a fixed fission source is augmented in a coarse mesh-based acceleration with power iteration. The second scheme applies global/local inner iterations in addition to the first scheme. Because p-CMFD is unconditionally stable and provides transport partial currents (instead of net current) on the interface between two coarse mesh cells, this enables the two schemes to speed up convergence even in optically thick coarse mesh cells. Numerical results on one-dimensional and two-dimensional test problems show that the two schemes (in particular, the scheme with global/local iterations) enhance the convergence speed of p-CMFD acceleration, especially for optically thick coarse mesh cells.