ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Seungsu Yuk, Nam Zin Cho
Nuclear Science and Engineering | Volume 188 | Number 1 | October 2017 | Pages 1-14
Technical Paper | doi.org/10.1080/00295639.2017.1332891
Articles are hosted by Taylor and Francis Online.
This paper identifies the cause of slow convergence for optically thick coarse mesh cells, when coarse mesh-based acceleration methods known in the literature are applied to the neutron transport criticality calculation. To overcome the limitation, this paper introduces two two-level iterative schemes to speed up coarse mesh-based acceleration, and they are applied to the partial current-based coarse mesh finite difference (p-CMFD) acceleration method. In the first scheme, a type of fine mesh finite difference (p-FMFD)- or intermediate mesh finite difference (p-IMFD)-based acceleration with a fixed fission source is augmented in a coarse mesh-based acceleration with power iteration. The second scheme applies global/local inner iterations in addition to the first scheme. Because p-CMFD is unconditionally stable and provides transport partial currents (instead of net current) on the interface between two coarse mesh cells, this enables the two schemes to speed up convergence even in optically thick coarse mesh cells. Numerical results on one-dimensional and two-dimensional test problems show that the two schemes (in particular, the scheme with global/local iterations) enhance the convergence speed of p-CMFD acceleration, especially for optically thick coarse mesh cells.