ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
N. Odry, J.-J. Lautard, J.-F. Vidal, G. Rimpault
Nuclear Science and Engineering | Volume 187 | Number 3 | September 2017 | Pages 240-253
Technical Paper | doi.org/10.1080/00295639.2017.1320891
Articles are hosted by Taylor and Francis Online.
An iterative domain decomposition method (DDM) is implemented inside the APOLLO3 Sn transport core solver MINARET. Based on a block-Jacobi algorithm, the method inherently suffers a convergence penalty in terms of both computing time and number of iterations. An acceleration method has to be developed in order to overcome this difficulty. This paper investigates a nonlinear coarse mesh rebalance (CMR) method that favors the way information propagates through the core when domain decomposition is used. The fundamental idea involves updating each subdomain boundary condition thanks to a core-sized low-order calculation on a coarse spatial mesh. The numerical convergence is sped up. Performances are meeting the expectations since the CMR acceleration systematically succeeds in overbalancing the domain decomposition additional cost. The aim of such a DDM + CMR algorithm is eventually to introduce more parallelism when solving the spatial transport equation. Nevertheless, parallel computing is not addressed in this paper.