ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
B. Richardson, J. King, A. Alajo, S. Usman, C. H. C. Giraldo
Nuclear Science and Engineering | Volume 187 | Number 1 | July 2017 | Pages 100-106
Technical Paper | doi.org/10.1080/00295639.2017.1292089
Articles are hosted by Taylor and Francis Online.
To validate an MCNP5 model of the Missouri S&T Research Reactor (MSTR), temperature and void effects on reactivity experiments were simulated and performed. We compared the keff of the modeled reactor mirroring the position of all control rods to the actual critical reactor (keff = 1.00000). In the simulation we modeled three different scenarios. In the first two scenarios, the reactor is modeled as isothermal at two different temperatures (measured experimentally near the core), and in the third scenario, we split the core into bottom and top parts and used interpolated values for the temperatures of both halves. The model predicted keff’s for the “critical reactor” between 1.00234 and 1.00248 (±0.00018) when using as temperature the experimental thermocouple readings at the top of the core and keff’s between 1.00296 to 1.00383 (±0.00018) when using the temperature of thermocouple readings at the bottom of the core. In the third experiment, a linear vertical temperature profile was included in the model (only top and bottom of the core), and the model predicted keff’s between 1.00218 and 1.00302 (±0.00018). The keff modeled and experimental values differed by as much as 0.40%. A void coefficient of the reactivity experiment was also simulated introducing a void tube in the model and the control rods made to mirror the critical experimental reactor with an identical void.