ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Rebecca Pachuau, B. Lalremruata, N. Otuka, L. R. Hlondo, L. R. M. Punte, H. H. Thanga
Nuclear Science and Engineering | Volume 187 | Number 1 | July 2017 | Pages 70-80
Technical Paper | doi.org/10.1080/00295639.2017.1291053
Articles are hosted by Taylor and Francis Online.
Recently, we measured the 70Zn(n,γ)71Znm activation cross sections using the 7Li(p,n)7Be neutron source for 2.0 MeV < Ep < 3.7 MeV. Since the time-of-flight and multiple foil activation techniques cannot be applied due to the continuous beam structure and weak neutron flux at the facility, we have to rely on calculated neutron energy spectra for data reduction procedure. There are existing Monte Carlo–based codes such as Protons In Neutrons Out (PINO) and SimLiT for calculation of 7Li(p,n)7Be neutron source spectra at these energies. However, these two codes predicted different neutron spectra at these energy regions. We therefore decided to study the thick and thin target 7Li(p,n)7Be neutron spectra from the reaction threshold to the three-body breakup threshold by deterministic calculation. The predicted neutron spectra near threshold were validated by experimental neutron spectra. Our neutron spectra were compared with those predicted by PINO and SimLiT. Our neutron spectra at Ep = 2.8 and 3.5 MeV agree perfectly with those predicted by SimLiT but not with those predicted by PINO.