ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Yunzhao Li, Kai Huang, Hongchun Wu, Liangzhi Cao
Nuclear Science and Engineering | Volume 187 | Number 1 | July 2017 | Pages 49-69
Technical Paper | doi.org/10.1080/00295639.2017.1297079
Articles are hosted by Taylor and Francis Online.
The depletion systems defined by the general purpose evaluated nuclear data libraries are unnecessarily complex for most applications in nuclear reactor physics analysis. However, the corresponding compression methods are confronted with two difficulties. On one hand, the number of possible compressed depletion systems is excessively large. On the other hand, the complicated neutronic-depletion coupling effects should be properly considered. In spite of the legacy empirical-based or semi-empirical-based methods, a generalized depletion system compression method based on quantitative significance analysis is proposed in this paper. First, a quantitative significance pair was defined for each basic unit compression operation (BUCO) with respect to the neutron production density, neutron absorption density, and number densities of selected important nuclides. Second, a series of representative problems was composed according to the problem definition domain and simulated by using the original depletion system. Third, the significance pairs were evaluated based on the simulation results of the representative problems, and then employed as the quantitative guidance for accepting or rejecting each BUCO. The commpressed depletion systems have been obtained based on the newly proposed method, and typical pressurized water reactor problems were employed to verify the compresssed depletion systems. Numerical results demonstrated that by adopting the compressed depletion systems generated by the proposed method, significant computing time and storage savings can be achieved while maintaining demanded accuracy.