ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Yunzhao Li, Kai Huang, Hongchun Wu, Liangzhi Cao
Nuclear Science and Engineering | Volume 187 | Number 1 | July 2017 | Pages 49-69
Technical Paper | doi.org/10.1080/00295639.2017.1297079
Articles are hosted by Taylor and Francis Online.
The depletion systems defined by the general purpose evaluated nuclear data libraries are unnecessarily complex for most applications in nuclear reactor physics analysis. However, the corresponding compression methods are confronted with two difficulties. On one hand, the number of possible compressed depletion systems is excessively large. On the other hand, the complicated neutronic-depletion coupling effects should be properly considered. In spite of the legacy empirical-based or semi-empirical-based methods, a generalized depletion system compression method based on quantitative significance analysis is proposed in this paper. First, a quantitative significance pair was defined for each basic unit compression operation (BUCO) with respect to the neutron production density, neutron absorption density, and number densities of selected important nuclides. Second, a series of representative problems was composed according to the problem definition domain and simulated by using the original depletion system. Third, the significance pairs were evaluated based on the simulation results of the representative problems, and then employed as the quantitative guidance for accepting or rejecting each BUCO. The commpressed depletion systems have been obtained based on the newly proposed method, and typical pressurized water reactor problems were employed to verify the compresssed depletion systems. Numerical results demonstrated that by adopting the compressed depletion systems generated by the proposed method, significant computing time and storage savings can be achieved while maintaining demanded accuracy.