ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Emiliano Masiello, Richard Sanchez, Igor Zmijarevic
Nuclear Science and Engineering | Volume 161 | Number 3 | March 2009 | Pages 257-278
Technical Paper | doi.org/10.13182/NSE161-257
Articles are hosted by Taylor and Francis Online.
The method of short characteristics is extended to two-dimensional heterogeneous Cartesian cells. The new application is intended for realistic pin-by-pin lattice calculations with an exact representation of the geometric shape of the pins, without need for homogenization. The method keeps the advantages of conventional discrete ordinates methods, such as fast execution, together with the possibility to deal with a large number of spatial meshes. Expansion bases, spatial integration, and balance conservation are discussed. A Fourier analysis of the method shows that the scheme preserves the asymptotic behavior of analytical transport. Two coarse-mesh finite difference acceleration techniques have also been analyzed and generalized with the use of Eddington's factors to speed up the rate of convergence of the inner iterations. Numerical examples for realistic configurations show the precision of the method and the efficiency of the accelerated iterations. An analytical stability analysis is also presented for studying the nonconverged behavior of the accelerated scheme, and we give numerical proof of chaotic behavior and the existence of bifurcations.