ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Wasim Raza, Kwang-Yong Kim
Nuclear Science and Engineering | Volume 161 | Number 2 | February 2009 | Pages 245-254
Technical Note | doi.org/10.13182/NSE161-245
Articles are hosted by Taylor and Francis Online.
In this work multiobjective shape optimization of a 19-pin wire-wrapped fuel assembly is carried out using a hybrid multiobjective evolutionary approach in order to achieve an acceptable compromise between two competing objectives, i.e., enhancement of heat transfer and reduction of friction loss. Two nondimensional variables, wire-spacer diameter to fuel rod diameter ratio and wire-wrap pitch to fuel rod diameter ratio, are chosen as design variables. The response surface approximation method is used to construct the surrogate with objective function values calculated by means of Reynolds-averaged Navier-Stokes analysis of the flow and heat transfer. The shear stress transport turbulence model is used as a turbulence closure. The optimization results are processed by the Pareto-optimal method. The Pareto-optimal solutions are obtained using a combination of the evolutionary algorithm NSGA-II and a local search method. The Pareto-optimal front for the wire-wrapped fuel assembly has been obtained. With an increase in the wire-spacer diameter, both heat transfer and friction loss in the assembly increase. The design with higher heat transfer on the Pareto-optimal curve shows not only a lower maximum temperature but also a more uniform temperature distribution on the cross section of the assembly in comparison with the other designs.