ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Tsung-Kuang Yeh, Mei-Ya Wang
Nuclear Science and Engineering | Volume 161 | Number 2 | February 2009 | Pages 235-244
Technical Paper | doi.org/10.13182/NSE161-235
Articles are hosted by Taylor and Francis Online.
It is currently a common practice that a boiling water reactor (BWR) adopts hydrogen water chemistry (HWC) for mitigating corrosion in structural components in its primary coolant circuit (PCC). The optimal feedwater hydrogen concentration ([H2]FW) varies from plant to plant and is usually set at a constant value. When the core flow rate (CFR) in a BWR is changed, the coolant residence time in the PCC would be different. The concentrations of major redox species (i.e., hydrogen, oxygen, and hydrogen peroxide) in the coolant may accordingly vary because of different radiolysis durations in the core and other near-core regions. A theoretical code by the name of DEMACE was used in the current study to investigate the impact of various CFRs (from 100 to 80.6%) on the effectiveness of HWC in a domestic BWR. Our analyses indicated that the HWC effectiveness could be downgraded because of an increase in CFR at locations such as upper downcomer, recirculation system, and lower plenum. However, the HWC efficiency at the upper plenum area did not vary with either increasing or decreasing CFRs. The impact of CFR on the HWC effectiveness is therefore expected to vary from location to location in a BWR and eventually from plant to plant.