ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Francis Barbry, Patrick Fouillaud, Pascal Grivot, Ludovic Reverdy
Nuclear Science and Engineering | Volume 161 | Number 2 | February 2009 | Pages 160-187
Technical Paper | doi.org/10.13182/NSE08-15
Articles are hosted by Taylor and Francis Online.
In 1967, the Commissariat à l'Energie Atomique (French Atomic Energy Agency) performed its first research on criticality accidents for the purpose of limiting their impact on people, the environment, and nuclear facilities themselves. A criticality accident is accompanied by intense neutron and gamma emissions and release of radioactive fission products - gases and aerosols - generating risk of irradiation and contamination. This work has supplemented earlier work in criticality safety, which concentrated on critical mass measurements and computations. Understanding of the consequences of criticality accidents was limited. Emergency planning was hampered by lack of data. Information became available from pulsed reactor experiments, but the experiments were restricted to the established reactor configurations. The objectives of research performed at the Valduc criticality laboratory, mainly on aqueous fissile media, using the CRAC and SILENE facilities, by multidisciplinary teams of physicists, dosimetry specialists, and radiobiologists, were to model criticality accident physics, estimate irradiation risks and radioactive releases, detect excursions, and organize emergency response. The results of the Valduc experiments have contributed toward improved understanding of criticality accident phenomenology and better evaluation of the risks associated with such accidents.