ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
N. V. Kornilov
Nuclear Science and Engineering | Volume 186 | Number 2 | May 2017 | Pages 190-198
Technical Paper | doi.org/10.1080/00295639.2016.1273625
Articles are hosted by Taylor and Francis Online.
The traditional assumption of prompt fission neutron spectra (PFNS) integrated over emission angle applies for any calculation of the neutron interaction inside fissile material. Only these evaluated data are included in any neutron data library. But this is not correct. Prompt fission neutrons have very strong angular energy distribution relative to fission fragment (FF) direction. The FFs have anisotropy relative to direction of incident neutrons. What is the influence of this assumption or simplification? Results of Monte Carlo simulation are submitted in this paper. The incorporation of “real” angular energy distribution changes the yield of 238U fission, and this difference may be compensated by changing the average energy of PFNS in the traditional approach. This effect is connected with correlations between different characteristics of interacted neutrons inside the environment. An additional type of correlation between multiplicity and energy of fission neutrons, named ν-E correlation, is also discussed.