ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
N. V. Kornilov
Nuclear Science and Engineering | Volume 186 | Number 2 | May 2017 | Pages 190-198
Technical Paper | doi.org/10.1080/00295639.2016.1273625
Articles are hosted by Taylor and Francis Online.
The traditional assumption of prompt fission neutron spectra (PFNS) integrated over emission angle applies for any calculation of the neutron interaction inside fissile material. Only these evaluated data are included in any neutron data library. But this is not correct. Prompt fission neutrons have very strong angular energy distribution relative to fission fragment (FF) direction. The FFs have anisotropy relative to direction of incident neutrons. What is the influence of this assumption or simplification? Results of Monte Carlo simulation are submitted in this paper. The incorporation of “real” angular energy distribution changes the yield of 238U fission, and this difference may be compensated by changing the average energy of PFNS in the traditional approach. This effect is connected with correlations between different characteristics of interacted neutrons inside the environment. An additional type of correlation between multiplicity and energy of fission neutrons, named ν-E correlation, is also discussed.