ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
N. V. Kornilov
Nuclear Science and Engineering | Volume 186 | Number 2 | May 2017 | Pages 190-198
Technical Paper | doi.org/10.1080/00295639.2016.1273625
Articles are hosted by Taylor and Francis Online.
The traditional assumption of prompt fission neutron spectra (PFNS) integrated over emission angle applies for any calculation of the neutron interaction inside fissile material. Only these evaluated data are included in any neutron data library. But this is not correct. Prompt fission neutrons have very strong angular energy distribution relative to fission fragment (FF) direction. The FFs have anisotropy relative to direction of incident neutrons. What is the influence of this assumption or simplification? Results of Monte Carlo simulation are submitted in this paper. The incorporation of “real” angular energy distribution changes the yield of 238U fission, and this difference may be compensated by changing the average energy of PFNS in the traditional approach. This effect is connected with correlations between different characteristics of interacted neutrons inside the environment. An additional type of correlation between multiplicity and energy of fission neutrons, named ν-E correlation, is also discussed.