ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Optimizing Maintenance Strategies in Power Generation: Embracing Predictive and Preventive Approaches
In the high-stakes world of power generation, ensuring continuous operation and reducing downtime are central priorities. With the increasing complexity of power generation systems, maintenance practices are evolving to meet these demands more efficiently. Understanding the roles of Predictive Maintenance (PdM), Preventive Maintenance (PM), and Reactive Maintenance (Run-to-Failure) is crucial for maintenance professionals in the energy sector to make informed decisions about equipment management and long-term operational strategy.
Mei-Ya Wang, Tsung-Kuang Yeh
Nuclear Science and Engineering | Volume 186 | Number 2 | May 2017 | Pages 180-189
Technical Paper | doi.org/10.1080/00295639.2016.1273014
Articles are hosted by Taylor and Francis Online.
Hydrogen water chemistry (HWC), aiming at coolant chemistry improvement, has been adopted worldwide for mitigating intergranular stress corrosion cracking in operating boiling water reactors (BWRs). However, a conventional hydrogen injection system employed in this technology was designed to operate only at power levels >30% of the rated power or at coolant temperatures >232°C. This system is usually in an idle and standby mode during a start-up operation. The coolant in a BWR during a cold shutdown normally contains a relatively high level of dissolved oxygen from intrusion of atmospheric air. Accordingly, the structural materials in the primary coolant circuit (PCC) of a BWR could be exposed to a strongly oxidizing environment for a short period of time during a subsequent start-up operation. In this study, the computer code DEMACE was used to investigate the variations in redox species concentration and in electrochemical corrosion potential (ECP) of structural components in the PCC of a domestic BWR during start-up operations with HWC. Simulations were carried out for power levels ranging from 3.8% to 11.3% during start-up operations. Our analyses indicated that for selected power levels with steam present in the core, a higher power level would tend to promote a more oxidizing coolant environment and therefore lead to less HWC effectiveness on ECP reduction. At even lower power levels in the absence of steam, the effectiveness of HWC was more prominent. At a feedwater hydrogen concentration of merely 0.1 parts per million, significant ECP reductions in the PCC of the BWR were observed.