ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
R. D. M. Garcia, C. E. Siewert, J. R. Thomas Jr.
Nuclear Science and Engineering | Volume 186 | Number 2 | May 2017 | Pages 103-119
Technical Paper | doi.org/10.1080/00295639.2016.1273627
Articles are hosted by Taylor and Francis Online.
The long-standing problem of implementing the PN method effectively for spherical geometry is revisited in this work. It is shown that a least-squares approach to the method resolves to a great extent the numerical instability reported for the first time by Aronson in 1984. In the proposed version of the method, a small loss of accuracy is still observed for intermediate orders of the approximation, but in high order (typically N ≥ 199), full accuracy is recovered, and the method can be used with confidence even for extremely high orders of the approximation. Numerical results of benchmark quality are tabulated for the quantities of interest for two basic transport problems in spherical geometry: the albedo problem for a sphere and the critical-sphere problem, both including cases that show the effects of scattering anisotropy described by the binomial law.