ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Yaqi Wang, Jean Ragusa
Nuclear Science and Engineering | Volume 161 | Number 1 | January 2009 | Pages 22-48
Technical Paper | doi.org/10.13182/NSE161-22
Articles are hosted by Taylor and Francis Online.
This paper presents fully automated hp-mesh refinement strategies applied to diffusion equations. In hp strategies, both the mesh size and the polynomial order can vary locally. Numerical results show that exponential convergence rates are achieved for a fraction of the number of unknowns needed with uniform refinement and h-adaptive strategies. The treatment of adaptivity in the multigroup case and the derivation of goal-oriented estimators for neutronics calculations are described. The smoothness of the multigroup components can vary greatly as a function of the energy group; this fact called for the development of group-dependent adapted spatial meshes. The goal-oriented process combines the standard hp adaptation technique with a goal-oriented adaptivity based on the simultaneous solution of an adjoint problem in order to compute quantities of interest, such as reaction rates in subdomains and pointwise fluxes or currents. These algorithms are tested for various multigroup one-dimensional and two-dimensional diffusion problems, and the numerical results confirm the exponential convergence rates predicted theoretically.