ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Lanfranco Monti, Ki-Bog Lee, Massimiliano Fratoni, Marco Sumini, Ehud Greenspan
Nuclear Science and Engineering | Volume 161 | Number 1 | January 2009 | Pages 1-21
Technical Paper | doi.org/10.13182/NSE162-01
Articles are hosted by Taylor and Francis Online.
The feasibility of indefinite recycling in the Encapsulated Nuclear Heat Source (ENHS) core without changing the pitch-to-diameter (P/D) ratio, while maintaining a nearly zero burnup reactivity swing, is investigated. The P/D ratio required to achieve a nearly burnup-independent keff over the life of the ENHS core was found sensitive to the initial composition of the transuranium (TRU) loaded and to the number of recycles this fuel underwent. The longer the cooling time is of the TRU from light water reactor (LWR) spent fuel, the larger the optimal P/D ratio becomes. Whereas the optimal P/D ratio of the reference ENHS core that is fueled with TRU from LWR spent fuel discharged at 50 GWd/t heavy metal (HM) and cooled for 10 yr is 1.36, it is 1.54 for the equilibrium core that features a substantially smaller concentration of 241Pu as well as of 242Pu, a larger concentration of 239Pu, and a substantially larger concentration of minor actinides. It was found that by increasing the cooling period of the above LWR TRU to ~32 yr, the optimal first core P/D ratio is that of the equilibrium core. The burnup reactivity swing of the subsequent cores fueled with successive recycling of the ENHS discharged HM is satisfactory. There is no need to adjust the core P/D ratio from recycle to recycle. The power level that can be removed by natural circulation from the P/D = 1.54 core is ~36% higher than that of the reference ENHS core. The physical phenomena affecting the observed trends are discussed, and the neutronic characteristics of the equilibrium cores identified are summarized.