ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Anthony Michael Scopatz
Nuclear Science and Engineering | Volume 186 | Number 1 | April 2017 | Pages 83-97
Technical Paper | doi.org/10.1080/00295639.2016.1272384
Articles are hosted by Taylor and Francis Online.
A method for quickly determining deployment schedules that meet any given fuel cycle demands is presented here. This algorithm is fast enough to perform in situ within low-fidelity fuel cycle simulators. It uses Gaussian process regression models to predict the production curve as a function of time and the number of deployed facilities. Each of these predictions is measured against the demand curve using the dynamic time warping distance. The minimum-distance deployment schedule is evaluated in a full fuel cycle simulation, and the generated production curve then informs the model on the next optimization iteration. The method converges within five to ten iterations to a distance that is less than 1% of the total deployable production. This speed of convergence makes it suitable for use even when fuel cycle realizations are expensive, as in higher-fidelity or agent-based simulators. A representative once-through fuel cycle is used to demonstrate the methodology for reactor deployment. However, the algorithm itself is multivariate and may be used to determine the deployment schedules of many facility types that meet a number of independent criteria simultaneously. The once-through, electricity production example was chosen for the simplicity of illustrating the method.