ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE’s latest fusion energy road map aims to bridge known gaps
The Department of Energy introduced a Fusion Science & Technology (S&T) Roadmap on October 16 as a national “Build–Innovate–Grow” strategy to develop and commercialize fusion energy by the mid-2030s by aligning public investment and private innovation. Hailed by Darío Gil, the DOE’s new undersecretary for science, as bringing “unprecedented coordination across America's fusion enterprise” and advancing President Trump’s January 2025 executive order, on “Unleashing American Energy,” the road map echoes plans issued by the DOE’s Office of Fusion Energy Sciences (FES) in 2023 and 2024, with a new emphasis on the convergence of AI and fusion.
The road map release coincided with other fusion energy events held this week in Washington, D.C., and beyond.
Anthony Michael Scopatz
Nuclear Science and Engineering | Volume 186 | Number 1 | April 2017 | Pages 83-97
Technical Paper | doi.org/10.1080/00295639.2016.1272384
Articles are hosted by Taylor and Francis Online.
A method for quickly determining deployment schedules that meet any given fuel cycle demands is presented here. This algorithm is fast enough to perform in situ within low-fidelity fuel cycle simulators. It uses Gaussian process regression models to predict the production curve as a function of time and the number of deployed facilities. Each of these predictions is measured against the demand curve using the dynamic time warping distance. The minimum-distance deployment schedule is evaluated in a full fuel cycle simulation, and the generated production curve then informs the model on the next optimization iteration. The method converges within five to ten iterations to a distance that is less than 1% of the total deployable production. This speed of convergence makes it suitable for use even when fuel cycle realizations are expensive, as in higher-fidelity or agent-based simulators. A representative once-through fuel cycle is used to demonstrate the methodology for reactor deployment. However, the algorithm itself is multivariate and may be used to determine the deployment schedules of many facility types that meet a number of independent criteria simultaneously. The once-through, electricity production example was chosen for the simplicity of illustrating the method.