ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
ANS Congressional Fellowship applications due
Applications for the Society’s Glenn T. Seaborg Congressional Science and Engineering Fellowship will be closing soon. Congressional Fellows can directly contribute to the federal policymaking process, working in either a U.S. senator’s or representative’s personal office or with a congressional committee. They will be responsible for supplying Congress with their expertise in nuclear science and technology, having a hand in the creation of new laws while gaining a deeper understanding of the legislative process.
Lara M. Pierpoint
Nuclear Science and Engineering | Volume 186 | Number 1 | April 2017 | Pages 66-82
Technical Paper | doi.org/10.1080/00295639.2016.1272386
Articles are hosted by Taylor and Francis Online.
Nuclear fuel cycle studies have provided a wealth of information on the potential impacts of advanced recycling systems. Deciding on fuel cycle implementation pathways, however, requires synthesizing volumes of data and navigating trade-offs between fuel cycle options. This research presents a framework intended to aid fuel cycle decision makers by focusing on the cost reduction/waste mitigation trade-off as a lens for choosing a near-term strategy. The framework consists of a fuel cycle simulation coupled to a decision tree model that maps evolution scenarios. System scenarios are constructed by considering the technological options for fuel cycle evolution and key uncertainties expected to affect the desirability of those options. For this study, the once-through fuel cycle is compared to a self-sustaining fast reactor (FR) fuel cycle. Scenarios are compared using a value function that incorporates cost and waste metrics. The results indicate that uranium costs and the attainable level of reprocessing efficiency may not significantly impact the suite of desirable decisions. On the other hand, the pattern and timing of nuclear builds as well as the extent to which FRs provide true waste mitigation more significantly impact the attractiveness of closing the fuel cycle.