ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Ashlea V. Colton, Blair P. Bromley, Daniel Wojtaszek, Clifford Dugal
Nuclear Science and Engineering | Volume 186 | Number 1 | April 2017 | Pages 48-65
Technical Paper | doi.org/10.1080/00295639.2016.1273021
Articles are hosted by Taylor and Francis Online.
Thorium, a fertile nuclear fuel that is nearly three times as abundant as uranium, represents a long-term energy source that could complement uranium and eventually replace it. To facilitate the gradual transition from uranium-based fuels to thorium-based fuels, it may be advantageous in the near term to introduce small amounts of thorium (˂7% of the total fuel mass) into uranium-based fuels in pressure tube heavy water reactors (PT-HWRs). Downblending natural or slightly enriched uranium dioxide with thorium dioxide for fuel pellets placed at the ends of the fuel stack of a conventional 37-element fuel bundle could help reduce axial power peaking for fresh fuel, while incorporating thorium dioxide into the central element of the fuel bundle could reduce coolant void reactivity (CVR).
A series of two-dimensional lattice physics simulations was carried out as part of conceptual scoping studies to evaluate the potential performance and safety characteristics of uranium-based fuel bundles with small amounts of thorium fuel added. The simulation results were complemented by an approximate model for evaluating the potential economic characteristics. The cases studied involve modifications to fuel composition, central element materials, and the addition of thorium dioxide to the fuel stack. In addition, a set of preliminary three-dimensional MCNP simulations was performed where fuel bundles were modeled to assess the effect of thorium end pellets and graded axial enrichment on end power peaking.
Results suggest it should be possible to incorporate thorium into the fuel cycle using existing 37-element fuel bundle geometry. Advantages to incorporating thorium include a reduction in the CVR through a thorium central element, breeding of small amounts of 233U, maintaining front-end fuel costs at or below the price of natural uranium (NU) fuel, and maintaining maximum linear element ratings within 6%of those achieved using NU 37-element fuel.