ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Motomasa Fuse, Naoshi Usui, Nobuyuki Ohta, Yoshiteru Sato, Ryosuke Shimizu, Hideyuki Hosokawa, Tsuyoshi Ito, Yoichi Wada
Nuclear Science and Engineering | Volume 186 | Number 1 | April 2017 | Pages 38-47
Technical Paper | doi.org/10.1080/00295639.2016.1272385
Articles are hosted by Taylor and Francis Online.
We have studied the effects of the oxidizing species on the cobalt radioactivity buildup behavior in boiling water reactors (BWRs) using both experimental results and existing literature data. The oxidizing species used to simulate the normal water chemistry (NWC) condition of BWRs were 200 ppb dissolved oxygen or 200 ppb hydrogen peroxide accompanied by 100 ppb dissolved oxygen. We found that the amount of cobalt deposited on stainless steel specimens in the oxygen-based water chemistry (200 ppb dissolved oxygen) was larger than that in the hydrogen peroxide–based water chemistry (200 ppb hydrogen peroxide and 100 ppb dissolved oxygen). The rate of cobalt deposition in the former chemistry was more than four times larger than that in the latter chemistry. This difference in cobalt deposition behavior can be attributed to two properties of oxides: surface morphology and composition. The film formed in the oxygen-based environment was less dense than the film formed in the hydrogen peroxide–based environment. Regarding the chemical constituents of the oxides, iron chromite is considered to be a major spinel-type oxide formed in oxygen-based environments. Furthermore, some literature data suggest that in hydrogen peroxide–based conditions, hematite-rich oxides are formed instead of magnetite-rich films, which are observed in oxygen-based conditions. These are likely reasons why the stainless steel specimens incorporate more cobalt radioactivity in the oxygen-based environment than in the hydrogen peroxide–based environment. The cobalt buildup behavior after switching from NWC to hydrogen water chemistry (HWC) is also affected by the oxidizing species used to simulate NWC; exposure to hydrogen peroxide–based NWC conditions tends to suppress the cobalt radioactivity buildup after switching from NWC to HWC compared to exposure to oxygen-based NWC.