ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Motomasa Fuse, Naoshi Usui, Nobuyuki Ohta, Yoshiteru Sato, Ryosuke Shimizu, Hideyuki Hosokawa, Tsuyoshi Ito, Yoichi Wada
Nuclear Science and Engineering | Volume 186 | Number 1 | April 2017 | Pages 38-47
Technical Paper | doi.org/10.1080/00295639.2016.1272385
Articles are hosted by Taylor and Francis Online.
We have studied the effects of the oxidizing species on the cobalt radioactivity buildup behavior in boiling water reactors (BWRs) using both experimental results and existing literature data. The oxidizing species used to simulate the normal water chemistry (NWC) condition of BWRs were 200 ppb dissolved oxygen or 200 ppb hydrogen peroxide accompanied by 100 ppb dissolved oxygen. We found that the amount of cobalt deposited on stainless steel specimens in the oxygen-based water chemistry (200 ppb dissolved oxygen) was larger than that in the hydrogen peroxide–based water chemistry (200 ppb hydrogen peroxide and 100 ppb dissolved oxygen). The rate of cobalt deposition in the former chemistry was more than four times larger than that in the latter chemistry. This difference in cobalt deposition behavior can be attributed to two properties of oxides: surface morphology and composition. The film formed in the oxygen-based environment was less dense than the film formed in the hydrogen peroxide–based environment. Regarding the chemical constituents of the oxides, iron chromite is considered to be a major spinel-type oxide formed in oxygen-based environments. Furthermore, some literature data suggest that in hydrogen peroxide–based conditions, hematite-rich oxides are formed instead of magnetite-rich films, which are observed in oxygen-based conditions. These are likely reasons why the stainless steel specimens incorporate more cobalt radioactivity in the oxygen-based environment than in the hydrogen peroxide–based environment. The cobalt buildup behavior after switching from NWC to hydrogen water chemistry (HWC) is also affected by the oxidizing species used to simulate NWC; exposure to hydrogen peroxide–based NWC conditions tends to suppress the cobalt radioactivity buildup after switching from NWC to HWC compared to exposure to oxygen-based NWC.