ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Ang Zhu, Yunlin Xu, Thomas Downar
Nuclear Science and Engineering | Volume 186 | Number 1 | April 2017 | Pages 23-37
Technical Paper | doi.org/10.1080/00295639.2016.1272387
Articles are hosted by Taylor and Francis Online.
Fourier analysis of the continuous infinite homogenous multigroup (MG) formulation is investigated in this paper for the time-dependent Boltzmann transport equation using discrete ordinates formulation. In addition, a continuous two-group (2G) and one-group (1G) Fourier analysis is performed to generate an analytical spectral radius and provide the basis for a theoretical analysis of the convergence. The discrete 1G formulation is then presented, and the theoretical analysis is found to predict the same spectral radius as the continuous 1G formulation. A typical pressurized water reactor pin cell problem with 47-group library is then homogenized with reflective boundary conditions, and the numerical spectral radius is calculated using the MPACT code. The theoretical predictions and the numerical results from the pin cell case agree very well and are found to have the following behavior: (1) The spectral radius is usually very close to unity for standard parameters for realistic transient application, (2) the spectral radius generally decreases as a function of inners per outer M, (3) the spectral radius generally decreases as a function of time-step size and then increases beyond unity for extremely small time steps, and (4) the spectral radius is almost constant as a function of the inserted reactivity. Good agreement is observed with the MG Fourier analysis. Finally, it is shown that the group sweeping coarse mesh finite difference method is theoretically and numerically very slow to converge the time-dependent neutron transport equation and that it is necessary to move the right-hand-side fission and transient source to the left-hand side and to solve the entire matrix form of the system.