ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Ang Zhu, Yunlin Xu, Thomas Downar
Nuclear Science and Engineering | Volume 186 | Number 1 | April 2017 | Pages 23-37
Technical Paper | doi.org/10.1080/00295639.2016.1272387
Articles are hosted by Taylor and Francis Online.
Fourier analysis of the continuous infinite homogenous multigroup (MG) formulation is investigated in this paper for the time-dependent Boltzmann transport equation using discrete ordinates formulation. In addition, a continuous two-group (2G) and one-group (1G) Fourier analysis is performed to generate an analytical spectral radius and provide the basis for a theoretical analysis of the convergence. The discrete 1G formulation is then presented, and the theoretical analysis is found to predict the same spectral radius as the continuous 1G formulation. A typical pressurized water reactor pin cell problem with 47-group library is then homogenized with reflective boundary conditions, and the numerical spectral radius is calculated using the MPACT code. The theoretical predictions and the numerical results from the pin cell case agree very well and are found to have the following behavior: (1) The spectral radius is usually very close to unity for standard parameters for realistic transient application, (2) the spectral radius generally decreases as a function of inners per outer M, (3) the spectral radius generally decreases as a function of time-step size and then increases beyond unity for extremely small time steps, and (4) the spectral radius is almost constant as a function of the inserted reactivity. Good agreement is observed with the MG Fourier analysis. Finally, it is shown that the group sweeping coarse mesh finite difference method is theoretically and numerically very slow to converge the time-dependent neutron transport equation and that it is necessary to move the right-hand-side fission and transient source to the left-hand side and to solve the entire matrix form of the system.