ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Akio Yamamoto, Akinori Giho, Yuki Kato, Tomohiro Endo
Nuclear Science and Engineering | Volume 186 | Number 1 | April 2017 | Pages 1-22
Technical Paper | doi.org/10.1080/00295639.2016.1273002
Articles are hosted by Taylor and Francis Online.
A heterogeneous transport solver in three-dimensional (3-D) geometry, GENESIS, is developed incorporating recent developments in the method of characteristics (MOC) in 3-D geometry. The Legendre Polynomial Expansion of Angular Flux (LEAF) method is implemented in the GENESIS code, in which neutron transport is calculated in two-dimensional (2-D) characteristics planes rather than in one-dimensional characteristics lines adopted in the conventional approach of 3-D MOC. Unlike the planar MOC method that combines 2-D MOC calculations through axial leakages, the GENESIS code explicitly considers angular and spatial dependence of outgoing and incoming angular fluxes between axial planes. Thus, the GENESIS code eliminates a crucial approximation used in the planar MOC method: No approximation is used for axial leakage treatment. The GENESIS code can handle flexible shapes of objects in rectangular or hexagonal geometry. A two-level, multigroup generalized coarse mesh rebalance acceleration method is adopted for efficient convergence of neutron transport calculation. Performance of the GENESIS code is verified through various benchmark calculations. The calculation results indicate the fidelity of the GENESIS code based on the LEAF method.