ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Akio Yamamoto, Akinori Giho, Yuki Kato, Tomohiro Endo
Nuclear Science and Engineering | Volume 186 | Number 1 | April 2017 | Pages 1-22
Technical Paper | doi.org/10.1080/00295639.2016.1273002
Articles are hosted by Taylor and Francis Online.
A heterogeneous transport solver in three-dimensional (3-D) geometry, GENESIS, is developed incorporating recent developments in the method of characteristics (MOC) in 3-D geometry. The Legendre Polynomial Expansion of Angular Flux (LEAF) method is implemented in the GENESIS code, in which neutron transport is calculated in two-dimensional (2-D) characteristics planes rather than in one-dimensional characteristics lines adopted in the conventional approach of 3-D MOC. Unlike the planar MOC method that combines 2-D MOC calculations through axial leakages, the GENESIS code explicitly considers angular and spatial dependence of outgoing and incoming angular fluxes between axial planes. Thus, the GENESIS code eliminates a crucial approximation used in the planar MOC method: No approximation is used for axial leakage treatment. The GENESIS code can handle flexible shapes of objects in rectangular or hexagonal geometry. A two-level, multigroup generalized coarse mesh rebalance acceleration method is adopted for efficient convergence of neutron transport calculation. Performance of the GENESIS code is verified through various benchmark calculations. The calculation results indicate the fidelity of the GENESIS code based on the LEAF method.