ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Dan G. Cacuci
Nuclear Science and Engineering | Volume 185 | Number 3 | March 2017 | Pages 361-383
Technical Paper | doi.org/10.1080/00295639.2016.1272993
Articles are hosted by Taylor and Francis Online.
Dispensing with the traditional approach to solving the equations modeling multiplying critical nuclear systems as an eigenvalue system, this work proposes a new and comprehensive mathematical framework (C-Framework) that eliminates the need for solving eigenvalue problems when computing the forward and adjoint neutron flux distributions in critical reactors. Consequently, the C-Framework enables the mathematical and computational analysis of critical and noncritical multiplying systems, with or without external sources, in a unified manner. By eliminating the need for solving eigenvalue problems, the C-Framework also enables the use of more efficient numerical methods (than currently used) for computing the forward and adjoint neutron flux distributions in critical reactors. Furthermore, the C-Framework also enables the application of the Comprehensive Adjoint Sensitivity Analysis Methodology (C-ASAM) as a replacement for the so-called generalized perturbation theory (GPT). The C-ASAM is much simpler to apply than the GPT, while not only yielding all of the results that the GPT can deliver, but also delivering results for all of the many—and not “GPT-allowable”—nonlinear responses of interest in reactor analysis that do not satisfy the very restrictive orthogonality relations required by the GPT’s underlying generalized adjoint equation. By dispensing with the need for solving eigenvalue problems involving the inversion of singular operators, the C-ASAM is vastly more general and more efficient than the GPT. These conclusions are underscored by exact analytical results presented for paradigm illustrative problems, which include problems that are solvable using the GPT (e.g., the system’s multiplication factor, ratios of reaction rates responses), and problems that are not solvable using the GPT (e.g., absolute reaction rates, equilibrium xenon concentration responses); all of these problems are shown to be solvable exactly and most efficiently within the C-ASAM framework.