ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
G. S. Gangwani, S. P. Tewari, L. S. Kothari
Nuclear Science and Engineering | Volume 57 | Number 1 | May 1975 | Pages 63-74
Technical Paper | doi.org/10.13182/NSE75-A40343
Articles are hosted by Taylor and Francis Online.
Calculations are reported for time-dependent, space-dependent, and steady-state neutron spectra in D2O ice assemblies of different dimensions and in the temperature range of 253 to 4 K. The scattering kernel used for these studies incorporates one- and two-phonon processes and is based on the Debye distribution function for the lattice vibrations of the D2O crystal. The multigroup Boltzmann diffusion equation was diagonalized to obtain transient and asymptotic spectra in assemblies at different temperatures with bucklings ranging from 0 to 0.15 cm-2. The calculated values of the effective decay constant are found to agree reasonably well with the experimental values reported by Salaita and Robeson at 253 K for waiting times of 160 to 320 μsec. The decay constants reported by Salaita and Robeson do not correspond to the asymptotic values, as claimed by the authors. The appropriate Boltzmann operator for the space-dependent problem was diagonalized to obtain its eigenvalues and eigenfunctions. By using these eigenfunctions, neutron spectra at different distances from the source plane were calculated in D2O ice at 253 K, and the diffusion lengths of neutrons were determined. Steady-state spectra in heavy ice assemblies at 77, 21, and 4 K were also investigated. The results for the effective neutron temperatures and the cold-neutron fractions agree well with the experimental results of Rush et al.