ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Ding She, Zhihong Liu, Lei Shi
Nuclear Science and Engineering | Volume 185 | Number 2 | February 2017 | Pages 351-360
Technical Paper | doi.org/10.1080/00295639.2016.1272363
Articles are hosted by Taylor and Francis Online.
Dispersion fuel is used in high-temperature reactors (HTRs) and some other advanced reactors. It contains a stochastic mixture of microsphere fuel grains or burnable poison grains embedded in a matrix material, which leads to the so-called double heterogeneity problem in the neutron transport calculation. This work investigates an equivalent homogenization method to deal with the stochastic media. In this method, the stochastic media are transformed to a homogenized material by introducing spatial self-shielding factors and preserving first-collision probabilities. A transmission model is proposed to calculate the first-collision probabilities and the self-shielding factors. In addition, the method is extended to treat the stochastic media with multitype grains. The applicability and correction techniques for the proposed method are discussed. The proposed method has been implemented in a lattice physics code named XPZ for HTRs. Numerical results are presented for typical HTR fuel pebbles and are validated against Monte Carlo solutions. It is concluded that the proposed equivalent homogenization method is promising for treating the double-heterogeneity problem and can be conveniently implemented in existing lattice physics codes.