ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Yeon Sang Jung, Won Sik Yang
Nuclear Science and Engineering | Volume 185 | Number 2 | February 2017 | Pages 307-324
Technical Paper | doi.org/10.1080/00295639.2016.1272369
Articles are hosted by Taylor and Francis Online.
This paper presents the method and performance of a coarse-mesh finite difference (CMFD) scheme for accelerating neutron transport calculations based on the finite element method (FEM). The transport solution based on FEM does not satisfy the neutron balance exactly because FEM yields a nonconservative discretization. A modified CMFD formulation has been developed to correct the limitation of the conventional CMFD that is applicable only to neutronics solvers with a conservative discretization. A consistent CMFD problem for the transport solution based on FEM is constructed by enforcing the neutron balance in each coarse mesh by introducing a pseudo absorption cross section, and the well-established alternating solution process of CMFD and transport calculations is employed to accelerate source convergence. The applicability of the modified CMFD scheme to transport calculation based on FEM was first tested for a one-dimensional, discrete ordinates (SN), discontinuous FEM. The performance of CMFD acceleration was then investigated with a two-dimensional/three-dimensional method of characteristic transport solver for thermal and fast reactor problems with various core sizes. It was observed that the consistent CMFD scheme could improve the computational efficiency of eigenvalue calculation significantly in the framework of a transport solver with fission source iteration.