ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Timothée Kooyman, Laurent Buiron, Gérald Rimpault
Nuclear Science and Engineering | Volume 185 | Number 2 | February 2017 | Pages 335-350
Technical Paper | doi.org/10.1080/00295639.2016.1272381
Articles are hosted by Taylor and Francis Online.
A methodology dedicated to the optimization of the transmutation of minor actinides (MAs) in dedicated blankets is discussed here. This methodology relies on recently developed optimization tools. In the so-called heterogeneous transmutation approach, MAs are loaded into specific assemblies located at the periphery of a fast reactor core. Thus, the resulting perturbation of the core behavior is limited and the management of MAs is entirely decoupled from standard fuel management. This also allows greater flexibility in the blanket design, in terms of material, volume fraction, and neutron spectrum to be used. On the other hand, the low neutron flux level experienced at the periphery of the core slows down the transmutation process. If this effect can be compensated for by an increase of the MA fraction loaded in the blankets, this also strongly increases their decay heat and neutron source level, which complicates spent fuel reprocessing and handling. An optimization is carried out with regard to the neutron spectrum and americium concentration in the blankets, with the dual objective of maximizing the transmuted MA mass while minimizing the total MA inventory in the fuel cycle by limiting the cooling time of such blankets. Artificial neural networks are coupled with a genetic algorithm to reduce the total calculation time. It is shown here that regardless of the MA mass to be loaded, a slightly moderated neutron spectrum is the most promising option for heterogeneous transmutation. This result is confirmed by full-core calculations. An analysis of the irradiation time is also performed, and it is shown that maximization of the irradiation time should be sought in the specific case studied here. It is concluded that from a purely physical point of view, no breakthrough can be obtained for heterogeneous transmutation.