ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Timothée Kooyman, Laurent Buiron, Gérald Rimpault
Nuclear Science and Engineering | Volume 185 | Number 2 | February 2017 | Pages 335-350
Technical Paper | doi.org/10.1080/00295639.2016.1272381
Articles are hosted by Taylor and Francis Online.
A methodology dedicated to the optimization of the transmutation of minor actinides (MAs) in dedicated blankets is discussed here. This methodology relies on recently developed optimization tools. In the so-called heterogeneous transmutation approach, MAs are loaded into specific assemblies located at the periphery of a fast reactor core. Thus, the resulting perturbation of the core behavior is limited and the management of MAs is entirely decoupled from standard fuel management. This also allows greater flexibility in the blanket design, in terms of material, volume fraction, and neutron spectrum to be used. On the other hand, the low neutron flux level experienced at the periphery of the core slows down the transmutation process. If this effect can be compensated for by an increase of the MA fraction loaded in the blankets, this also strongly increases their decay heat and neutron source level, which complicates spent fuel reprocessing and handling. An optimization is carried out with regard to the neutron spectrum and americium concentration in the blankets, with the dual objective of maximizing the transmuted MA mass while minimizing the total MA inventory in the fuel cycle by limiting the cooling time of such blankets. Artificial neural networks are coupled with a genetic algorithm to reduce the total calculation time. It is shown here that regardless of the MA mass to be loaded, a slightly moderated neutron spectrum is the most promising option for heterogeneous transmutation. This result is confirmed by full-core calculations. An analysis of the irradiation time is also performed, and it is shown that maximization of the irradiation time should be sought in the specific case studied here. It is concluded that from a purely physical point of view, no breakthrough can be obtained for heterogeneous transmutation.