ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
M. Andersson, D. Blanchet, H. Nylén, R. Jacqmin
Nuclear Science and Engineering | Volume 185 | Number 2 | February 2017 | Pages 277-293
Technical Paper | doi.org/10.1080/00295639.2016.1272359
Articles are hosted by Taylor and Francis Online.
Advanced sodium-cooled fast reactors with improved safety features such as the French Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID) CFV (French acronym of Coeur à Faible effet de Vide sodium, meaning low sodium void effect core) core concept are characterized by an axial heterogeneous core that will present a challenge for the homogenization procedures used today, taking into account all the different axial material transitions. Reliable modeling of the control rod and accurate prediction of the control rod worth are essential to determining the shutdown margins and to ensuring safe operation.
In this work (part II of two companion papers), two different homogenization schemes are compared. One is based on the traditional reactivity-equivalence procedure in two dimensions, and the other is a newly implemented three-dimensional (3-D) version of the reactivity-equivalence procedure, with approximations based on the results in the companion paper. The deterministic results are compared with a Monte Carlo reference.
Both cross-section sets from the two homogenization schemes yielded results within the requested ±5% error margin in reactivity. The largest discrepancy was found for the classical procedure for the case with a slightly inserted control rod (normal operating conditions). Both cross-section sets yielded similar power profiles in the fuel subassembly neighboring the control rod within the 2σ Monte Carlo standard deviation. Neither of the cross-section sets was able to predict the large gradients in capture rates close to the internal control rod interfaces.
The study showed that the traditional two-dimensional (2-D) reactivity-equivalence procedure produces homogenized cross sections that yield reliable results in a CFV-type core. One exception from this was found for slightly inserted control rods, where the effect of the follower-absorber interface could not be fully captured by the 2-D scheme, and for such cases, 3-D modeling is recommended.