ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Shane Stimpson, Benjamin Collins, Thomas Downar
Nuclear Science and Engineering | Volume 185 | Number 2 | February 2017 | Pages 243-262
Technical Paper | doi.org/10.1080/00295639.2016.1272360
Articles are hosted by Taylor and Francis Online.
The MPACT code being developed collaboratively by Oak Ridge National Laboratory and the University of Michigan is the primary deterministic neutron transport solver within the Virtual Environment for Reactor Applications Core Simulator (VERA-CS). In MPACT, the two-dimensional (2-D)/one-dimensional (1-D) scheme is the most commonly used method for solving neutron transport�based three-dimensional nuclear reactor core physics problems. Several axial solvers in this scheme assume isotropic transverse leakages, but work with the axial SN solver has extended these leakages to include both polar and azimuthal dependence. However, explicit angular representation can be burdensome for run-time and memory requirements. The work here alleviates this burden by assuming that the azimuthal dependence of the angular flux and transverse leakages are represented by a Fourier series expansion. At the heart of this is a new axial SN solver that takes in a Fourier expanded radial transverse leakage and generates the angular fluxes used to construct the axial transverse leakages used in the 2-D�Method of Characteristics calculations.
These new capabilities are demonstrated for the rodded Takeda light water reactor benchmark problem and the extended C5G7 benchmark suite. Results with heterogeneous pins, as in the C5G7 benchmark, indicate that cancelation of error between the angular and spatial representation of the transverse leakages may be a factor in the results obtained. To test this, an alternative C5G7 problem has been formulated using homogenized pin cells to reduce the errors introduced by assuming that the axial transverse leakage is spatially flat. In both the Takeda and C5G7 problems with homogeneous pins, excellent agreement is observed at a fraction of the run time and with notable reductions in memory footprint.