ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Travis J. Trahan, Edward W. Larsen
Nuclear Science and Engineering | Volume 185 | Number 1 | January 2017 | Pages 1-35
Technical Paper | doi.org/10.13182/NSE16-27
Articles are hosted by Taylor and Francis Online.
In this work, we derive and test variational discontinuity factors (DFs) for the asymptotic homogenized diffusion equation. We begin with a functional for optimally estimating the reactor multiplication factor, then introduce asymptotic expressions for the forward and adjoint angular fluxes, and finally require that all first-order error terms vanish. In this way, the reactor multiplication factor can be calculated with second-order error. The analysis leads to (1) an alternate derivation of the asymptotic homogenized diffusion equation, (2) variational boundary conditions for large periodic systems, and (3) variational DFs to be applied between adjacent periodic regions (e.g., fuel assemblies). Numerical tests show that applying the variational DFs to the asymptotic homogenized diffusion equation yields the most accurate estimates of the reactor multiplication factor compared to other DFs for a wide range of problems. However, the resulting assembly powers are less accurate than those obtained using other DFs for many realistic problems.