ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Vincent M. Laboure, Ryan G. McClarren, Yaqi Wang
Nuclear Science and Engineering | Volume 185 | Number 2 | February 2017 | Pages 294-306
Technical Paper | doi.org/10.1080/00295639.2016.1272374
Articles are hosted by Taylor and Francis Online.
In this paper, we derive a method for the second-order form of the transport equation that is both globally conservative and compatible with voids using the continuous finite element method. The main idea is to use the least-squares (LS) form of the transport equation in the void regions and the self-adjoint angular flux (SAAF) form elsewhere. While the SAAF formulation is globally conservative, the LS formulation needs correction in voids. The price to pay for this fix is the loss of symmetry of the bilinear form. We first derive this conservative LS (CLS) formulation in a void. Second, we combine the SAAF and CLS forms and end up with an hybrid SAAF-CLS method having the desired properties. We show that extending the theory to near-void regions is a minor complication and can be done without affecting the global conservation of the scheme. Being angular discretization-agnostic, this method can be applied to both discrete ordinates (SN) and spherical harmonics (PN) methods. However, since a globally conservative and void-compatible second-order form already exists for SN [Wang et al., Nucl. Sci. Eng., Vol. 176, p. 201 (2014)] but not for PN, we focus most of our attention on the latter angular discretization. We implement and test our method in Rattlesnake within the Multiphysics Object Oriented Simulation Environment (MOOSE) framework. The results are also compared to those of other methods.