ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Jie Liu, Lihua Chi, Wang QingLin, Gong Chunye, Jiang Jie, Gan Xinbiao, Li Shengguo, Qingfeng Hu, Tom Masterson
Nuclear Science and Engineering | Volume 184 | Number 4 | December 2016 | Pages 527-536
Technical Paper | doi.org/10.13182/NSE15-53
Articles are hosted by Taylor and Francis Online.
Sweep scheduling methods used in particle transport problems belong to the class of precedence-constrained scheduling problems that are NP-complete. It is difficult to schedule local tasks for this type of transport problem and simultaneously optimize computational performance and parallel processor communication. In this paper, we present a parallel spatial-domain-decomposition algorithm to divide the tasks among the available processors. We also present a new algorithm for scheduling tasks within each processor. The scheduling algorithm has the required data and does not need to communicate with any other processor. This algorithm optimizes and assigns task priorities within the processor. Computational tasks whose results are required by another processor receive the highest priority. We combined these two algorithms to solve two-dimensional particle transport equations on unstructured grids. Our results show good performance and scalability up to 16 384 processors on the TianHe-2 supercomputer.