ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Luke R. Cornejo, Dmitriy Y. Anistratov
Nuclear Science and Engineering | Volume 184 | Number 4 | December 2016 | Pages 514-526
Technical Paper | doi.org/10.13182/NSE16-78
Articles are hosted by Taylor and Francis Online.
We present a multilevel method for solving multigroup neutron transport k-eigenvalue problems in two-dimensional Cartesian geometry. It is based on the nonlinear diffusion acceleration (NDA) method. The multigroup low-order NDA (LONDA) equations are formulated on a sequence of energy grids. Various multigrid cycles are applied to solve the hierarchy of multigrid LONDA equations. The algorithms developed accelerate transport iterations and are effective in solving the multigroup NDA low-order equations. We present numerical results for model reactor-physics problems with a large number of groups to demonstrate the performance of different iterative schemes.