ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Tiejun Zu, Qian Zhang, Hongchun Wu, Liangzhi Cao, Qingming He, Won Sik Yang
Nuclear Science and Engineering | Volume 184 | Number 4 | December 2016 | Pages 495-513
Technical Paper | doi.org/10.13182/NSE16-65
Articles are hosted by Taylor and Francis Online.
The theory of resonance interference factor (RIF) method is examined for thermal reactor problems, and the approximations and limitations are identified. To evaluate the interference effect between resonance isotopes, the RIF method establishes an approximate equivalent relationship between a heterogeneous system and a homogeneous system by introducing background cross sections, and the approximation is a source of deviation in self-shielding calculations. Furthermore, each resonance isotope is treated individually in the self-shielding procedure, which requires unnecessary calculation effort, especially for whole-core and burnup cases. Based on the analysis, a heterogeneous pseudo-resonant isotope method (HPRIM) is proposed to overcome these problems. The mixture of resonant nuclides is considered as a pseudo-resonant isotope, and the resonance integral is generated in a one-dimensional heterogeneous system. The numerical results show that HPRIM improves the accuracy of evaluating the resonance interference effect and improves the efficiency of the self-shielding procedure.