ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Tushar Roy, Nirmal Ray, Shefali Bajpai, Tarun Patel, Mayank Shukla, Yogesh Kashyap, Amar Sinha, S. C. Gadkari
Nuclear Science and Engineering | Volume 184 | Number 4 | December 2016 | Pages 584-590
Technical Paper | doi.org/10.13182/NSE16-81
Articles are hosted by Taylor and Francis Online.
The use of accelerator-driven systems for incineration of nuclear waste and energy production requires monitoring of different parameters that govern reactor safety. One of the most important parameters is the multiplication factor keff . The present paper describes the results of experiments carried out on a subcritical system (BRAHMMA) using a pulsed neutron source. The value of the multiplication factor keff obtained from time responses of the core that were measured in situ using neutron detectors after insertion of a neutron pulse matches well with the calculated value.