ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Gretar Tryggvason, Ming Ma, Jiacai Lu
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 312-320
Technical Paper | doi.org/10.13182/NSE16-10
Articles are hosted by Taylor and Francis Online.
The transient motion of bubbly flows in vertical channels is studied, using direct numerical simulation (DNS) in which every continuum length and time scale is resolved. A simulation of a large number of bubbles of different sizes at a friction Reynolds number of 500 shows that small bubbles quickly migrate to the wall, but the bulk flow takes much longer to adjust to the new bubble distribution. Simulations of much smaller laminar systems with several spherical bubbles have been used to examine the full transient motion; those show a nonmonotonic evolution where all the bubbles first move toward the walls, and the liquid then slowly slows down, eventually allowing some bubbles to return to the center of the channel. Unlike the statistically steady state, where the flow structure is relatively simple and in some cases depends only on the sign of the bubble lift coefficient, the transient evolution is more sensitive to the governing parameters. Early efforts to use DNS results to provide values for the unresolved closure terms in a simple average model for the flow found by statistical learning from the data using neural networks are discussed. The prospect for using the results from simulations of large systems with bubbles of different sizes in turbulent flows for large eddy–like simulations are explored, including the simplification of the interface structure by filtering. Finally, preliminary results for flows undergoing topology changes are shown.